## Math 332H • May 7, 2009

**Final Examination** 

This is a closed-book exam; neither notes nor calculators are allowed. You can choose between problems 2 and 2', 3 and 3' (choose one in each pair)

1) (20pts) For each, find **all distinct** values of *z*, in Cartesian form, and simplify as much as possible:

(a)  $z = |(-1)^i|$  (b)  $e^{iz} = -4i$  (c)  $z = (1-i)^{2/3}$ 

2) (12pts) Sketch the mapping of the region  $0 \le \text{Arg } z \le \pi/4$ ,  $1 \le |z| \le 2$ , under the transformation w = i/z

**2'**) (12pts) Show that the function  $u(x, y) = 2x^2 - 3y - 2y^2 + 5$  is harmonic, find its harmonic conjugate, v(x, y), and express the analytic function f(x, y) = u(x, y) + i v(x, y) as a function of *z*. Assume that f(i)=i.

3) (12pts) Find the two different series representations for the function

$$f(z) = \frac{1}{z(z+2i)^2}$$
 centered at  $z = 0$  (use the full  $\sum$  notation), and show the two

regions in the complex plane where each series is valid [ hint: you may need term-by-term differentiation to derive the series for  $1/(1+w)^2$ ]

**3'**) (12pts) Find the singularity type, the residue and the first three non-zero terms in the series for the following function at the specified point:

$$f(z) = \frac{e^z - \cos z}{z \sin z} \quad \text{at} \quad z = 0$$

4) (28pts) Find the following contour integrals, using the method of residues where possible. The integration contour is a circle of radius R=5 around the origin, in the positive direction:

(a) 
$$\oint_{C_{R=5}} \frac{dz}{e^z \sin z}$$
 (b) 
$$\oint_{C_{R=5}} \frac{\sinh z \, dz}{\left(z - i - 3\right)^2}$$
 (c) 
$$\oint_{C_{R=5}} \frac{dz}{\left(e^z - 1\right)^2}$$
 (d) 
$$\oint_{C_{R=5}} \text{Log } z \, dz$$

5) (28pts) Calculate any two of the following three integrals, justifying each step.

(a) 
$$\int_{0}^{\infty} \frac{x^{2} \cos(2x)}{x^{4} + 4} dx$$
 (b)  $\int_{0}^{\infty} \frac{\sin(2x)}{x} dx$  (c)  $\int_{0}^{\infty} \frac{\sqrt[3]{x}}{x^{2} + 2x + 1} dx$ 

In (b) and (c), use the contours shown below

