Final Examination
This is a closed-book exam; neither notes nor calculators are allowed.
You can choose between problems 2 and 2', 3 and 3' (choose one in each pair)

1) (20pts) For each, find all distinct values of z, in Cartesian form, and simplify as much as possible:
(a) $z=\left|(-1)^{i}\right|$
(b) $e^{i z}=-4 i$
(c) $z=(1-i)^{2 / 3}$
2) (12pts) Sketch the mapping of the region $0 \leq \operatorname{Arg} z \leq \pi / 4,1 \leq|z| \leq 2$, under the transformation $w=i / z$

2') (12pts) Show that the function $u(x, y)=2 x^{2}-3 y-2 y^{2}+5$ is harmonic, find its harmonic conjugate, $v(x, y)$, and express the analytic function $f(x, y)=u(x, y)+i v(x, y)$ as a function of z. Assume that $f(i)=i$.
3) (12pts) Find the two different series representations for the function $f(z)=\frac{1}{z(z+2 i)^{2}}$ centered at $z=0$ (use the full \sum notation), and show the two regions in the complex plane where each series is valid [hint: you may need term-byterm differentiation to derive the series for $\left.1 /(1+w)^{2}\right]$
3^{\prime}) (12pts) Find the singularity type, the residue and the first three non-zero terms in the series for the following function at the specified point:

$$
f(z)=\frac{e^{z}-\cos z}{z \sin z} \text { at } z=0
$$

4) (28pts) Find the following contour integrals, using the method of residues where possible. The integration contour is a circle of radius $\mathrm{R}=5$ around the origin, in the positive direction:
(a) $\oint_{C_{R=5}} \frac{d z}{e^{z} \sin z}$
(b) $\oint_{C_{R=5}} \frac{\sinh z d z}{(z-i-3)^{2}}$
(c) $\oint_{C_{R=5}} \frac{d z}{\left(e^{z}-1\right)^{2}}$
(d) $\oint_{C_{R=5}} \log z d z$
5) (28pts) Calculate any two of the following three integrals, justifying each step.
(a) $\int_{0}^{\infty} \frac{x^{2} \cos (2 x)}{x^{4}+4} d x$
(b) $\int_{0}^{\infty} \frac{\sin (2 x)}{x} d x$
(c) $\int_{0}^{\infty} \frac{\sqrt[3]{x}}{x^{2}+2 x+1} d x$

In (b) and (c), use the contours shown below
(b)

(c)

